#Yan Wang #08/17/2020 #Lab 02
library(tidyverse)
## -- Attaching packages ------------------------ tidyverse 1.3.0 --
## √ ggplot2 3.3.2 √ purrr 0.3.4
## √ tibble 3.0.3 √ dplyr 1.0.1
## √ tidyr 1.1.1 √ stringr 1.4.0
## √ readr 1.3.1 √ forcats 0.5.0
## -- Conflicts --------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
url = 'https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv'
covid = read_csv(url)
## Parsed with column specification:
## cols(
## date = col_date(format = ""),
## county = col_character(),
## state = col_character(),
## fips = col_character(),
## cases = col_double(),
## deaths = col_double()
## )
head(covid)
## # A tibble: 6 x 6
## date county state fips cases deaths
## <date> <chr> <chr> <chr> <dbl> <dbl>
## 1 2020-01-21 Snohomish Washington 53061 1 0
## 2 2020-01-22 Snohomish Washington 53061 1 0
## 3 2020-01-23 Snohomish Washington 53061 1 0
## 4 2020-01-24 Cook Illinois 17031 1 0
## 5 2020-01-24 Snohomish Washington 53061 1 0
## 6 2020-01-25 Orange California 06059 1 0
#Question 1
library(tidyverse)
dat <- covid %>%
filter(state == "California") %>%
group_by(county) %>%
mutate(newCases = cases - lag(cases)) %>%
ungroup() %>%
filter(date == max(date))
most_cases = dat %>%
slice_max(cases, n = 5) %>%
select(county, cases)
knitr::kable(most_cases,
caption = "Most Cases California Counties",
col.names = c("County", "Cases"))
County | Cases |
---|---|
Los Angeles | 253176 |
Riverside | 55073 |
Orange | 51936 |
San Bernardino | 50543 |
San Diego | 42477 |
most_new_cases = dat %>%
slice_max(newCases, n = 5) %>%
select(county, newCases)
knitr::kable(most_new_cases,
caption = "Most New Cases California Counties",
col.names = c("County", "New Cases"))
County | New Cases |
---|---|
Los Angeles | 1110 |
San Diego | 445 |
Santa Clara | 274 |
Orange | 178 |
San Joaquin | 165 |
library(readxl)
StatePopulationEstimates <- read_excel("~/github/geog-176A-labs/data/PopulationEstimates.xls", skip = 2) %>%
select(pop19 = POP_ESTIMATE_2019, fips = FIPStxt)
covid_population <- inner_join(covid, StatePopulationEstimates, by = 'fips')
most_cases_percapita <- covid_population %>%
filter(date == max(date)) %>%
filter(state == 'California') %>%
mutate(casesPerCapita = (cases / pop19)) %>%
arrange(-casesPerCapita) %>%
head(5)
knitr::kable(most_cases_percapita, caption = "Most Cumulative Cases Per Capita", col.names = c('Date', 'County', 'State', 'FIPS', 'Cases', 'Deaths', 'Population', 'Cases Per Capita'))
Date | County | State | FIPS | Cases | Deaths | Population | Cases Per Capita |
---|---|---|---|---|---|---|---|
2020-09-12 | Imperial | California | 06025 | 11274 | 307 | 181215 | 0.0622134 |
2020-09-12 | Kings | California | 06031 | 7057 | 77 | 152940 | 0.0461423 |
2020-09-12 | Kern | California | 06029 | 30622 | 326 | 900202 | 0.0340168 |
2020-09-12 | Tulare | California | 06107 | 15114 | 247 | 466195 | 0.0324199 |
2020-09-12 | Merced | California | 06047 | 8541 | 127 | 277680 | 0.0307584 |
##Question1(10) ### (1) Describe the total number of cases
library(tidyverse)
url = 'https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv'
covid = read_csv(url)
## Parsed with column specification:
## cols(
## date = col_date(format = ""),
## county = col_character(),
## state = col_character(),
## fips = col_character(),
## cases = col_double(),
## deaths = col_double()
## )
head(covid)
## # A tibble: 6 x 6
## date county state fips cases deaths
## <date> <chr> <chr> <chr> <dbl> <dbl>
## 1 2020-01-21 Snohomish Washington 53061 1 0
## 2 2020-01-22 Snohomish Washington 53061 1 0
## 3 2020-01-23 Snohomish Washington 53061 1 0
## 4 2020-01-24 Cook Illinois 17031 1 0
## 5 2020-01-24 Snohomish Washington 53061 1 0
## 6 2020-01-25 Orange California 06059 1 0
dat = covid %>%
filter(state == "California") %>%
group_by(county) %>%
mutate(newCases = cases - lag(cases)) %>%
ungroup() %>%
filter(date == max(date))
library(tidyverse)
(total_state_cases = dat %>%
filter(date == max(date)) %>%
group_by(county) %>%
summarise(cases = sum(cases, na.rm = TRUE)) %>%
ungroup() %>%
summarise(cases = sum(cases, na.rm = TRUE)) %>%
pull(cases))
## `summarise()` ungrouping output (override with `.groups` argument)
## [1] 760581
##Question1(10) ### (2) Describe the total number of new cases
library(tidyverse)
(total_state_newCases = dat %>%
filter(date == max(date)) %>%
group_by(county) %>%
summarise(newCases = sum(newCases, na.rm = TRUE)) %>%
ungroup() %>%
summarise(newCases = sum(newCases, na.rm = TRUE)) %>%
pull(newCases))
## `summarise()` ungrouping output (override with `.groups` argument)
## [1] 3456
##Question1(10) ### (3) Describe the total number of safe counties
library(readxl)
library(tidyverse)
pop <- read_excel("../data/PopulationEstimates.xls", skip = 2)
(pop3 = pop %>%
filter(State == "CA") %>%
select(pop19 = POP_ESTIMATE_2019, state = State, county = Area_Name, fips = FIPStxt) %>%
group_by(county) %>%
slice_max(pop19, n=1))
## # A tibble: 59 x 4
## # Groups: county [59]
## pop19 state county fips
## <dbl> <chr> <chr> <chr>
## 1 1671329 CA Alameda County 06001
## 2 1129 CA Alpine County 06003
## 3 39752 CA Amador County 06005
## 4 219186 CA Butte County 06007
## 5 45905 CA Calaveras County 06009
## 6 39512223 CA California 06000
## 7 21547 CA Colusa County 06011
## 8 1153526 CA Contra Costa County 06013
## 9 27812 CA Del Norte County 06015
## 10 192843 CA El Dorado County 06017
## # ... with 49 more rows
(dat2 = covid %>%
filter(state == "California") %>%
group_by(county) %>%
mutate(newCases = cases - lag(cases)) %>%
ungroup())
## # A tibble: 10,421 x 7
## date county state fips cases deaths newCases
## <date> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2020-01-25 Orange California 06059 1 0 NA
## 2 2020-01-26 Los Angeles California 06037 1 0 NA
## 3 2020-01-26 Orange California 06059 1 0 0
## 4 2020-01-27 Los Angeles California 06037 1 0 0
## 5 2020-01-27 Orange California 06059 1 0 0
## 6 2020-01-28 Los Angeles California 06037 1 0 0
## 7 2020-01-28 Orange California 06059 1 0 0
## 8 2020-01-29 Los Angeles California 06037 1 0 0
## 9 2020-01-29 Orange California 06059 1 0 0
## 10 2020-01-30 Los Angeles California 06037 1 0 0
## # ... with 10,411 more rows
pop_dat2 = right_join(pop3, dat2, by = "fips")
(last14Days = pop_dat2 %>%
filter(date > max(date) - 14, date < max(date)) %>%
select(county = county.y, newCases, pop19, date) %>%
group_by(county, pop19) %>%
summarise(newCases = sum(newCases, na.rm = TRUE)) %>%
ungroup() %>%
mutate(newCases_percapita = (newCases/(pop19/100000))))
## `summarise()` regrouping output by 'county' (override with `.groups` argument)
## # A tibble: 58 x 4
## county pop19 newCases newCases_percapita
## <chr> <dbl> <dbl> <dbl>
## 1 Alameda 1671329 1972 118.
## 2 Alpine 1129 0 0
## 3 Amador 39752 43 108.
## 4 Butte 219186 704 321.
## 5 Calaveras 45905 62 135.
## 6 Colusa 21547 48 223.
## 7 Contra Costa 1153526 1358 118.
## 8 Del Norte 27812 7 25.2
## 9 El Dorado 192843 81 42.0
## 10 Fresno 999101 2171 217.
## # ... with 48 more rows
library(tidyverse)
(safe_counties = last14Days %>%
filter(newCases_percapita < 100) %>%
pull(county))
## [1] "Alpine" "Del Norte" "El Dorado" "Humboldt"
## [5] "Inyo" "Lake" "Lassen" "Mariposa"
## [9] "Mono" "Napa" "Nevada" "Placer"
## [13] "Plumas" "San Francisco" "Shasta" "Sierra"
## [17] "Siskiyou" "Solano" "Tehama" "Trinity"
## [21] "Tuolumne"
As of August 17, 2020, there are a total of 628508 cases, 6527 new cases within the state of California, and 13 counties in California are safe.
#Question 2
library(ggthemes)
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(tidyverse)
covid %>%
filter(state %in% c('New York', 'California', 'Louisiana', 'Florida')) %>%
group_by(state, date) %>%
summarize(cases = sum(cases)) %>%
ungroup(state, date) %>%
group_by(state) %>%
mutate(newCases = cases - lag(cases)) %>%
mutate(roll7 = rollmean(newCases, 7, fill = NA, align = "right")) %>%
ggplot(aes(x = date)) +
geom_col(aes(y = newCases), fill = "#F5B8B5") +
geom_line(aes(y = roll7), col = "darkred", size = 1) +
labs(title = "New Cases: States",
x = 'Date',
y = "Daily New Cases Count",
caption = "Geog 176A-Lab 02",
subtitle = "COVID-19 Data: NY-Times",
color = "") +
facet_wrap(~state, scales = "free_y") +
theme(plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
plot.title = element_text(size = 15, face = 'bold')) +
theme(aspect.ratio = .5)
## `summarise()` regrouping output by 'state' (override with `.groups` argument)
## Warning: Removed 4 rows containing missing values (position_stack).
## Warning: Removed 7 row(s) containing missing values (geom_path).
library(tidyverse)
dat2 = covid%>%
filter(state %in% c('New York', 'California', 'Louisiana', 'Florida')) %>%
group_by(state, date) %>%
summarize(cases = sum(cases)) %>%
ungroup(state, date) %>%
group_by(state) %>%
mutate(NewDailyCases = cases - lag(cases)) %>%
mutate(SevenDayAvg = rollmean(NewDailyCases, 7, fill = NA, align = "right"))
## `summarise()` regrouping output by 'state' (override with `.groups` argument)
StatePopulationEstimates1 <- read_excel("~/github/geog-176A-labs/data/PopulationEstimates.xls", skip = 2) %>%
select(pop19 = POP_ESTIMATE_2019, state_abbr = State, state = Area_Name) %>%
group_by(state_abbr) %>%
slice_max(pop19, n = 1)
newjoineddata = inner_join(dat2, StatePopulationEstimates1, by = 'state')
percapdata <- newjoineddata %>%
group_by(state) %>%
mutate(NewCasesPerCap = NewDailyCases / pop19) %>%
mutate(NewSevenDayAvg = rollmean(NewCasesPerCap, 7, fill = NA, align = "right"))
percapdata %>%
ggplot(aes(x = date)) +
geom_col(aes(y = NewCasesPerCap), col = "#F5B8B5") +
geom_line(aes(y = NewSevenDayAvg), col = "darkred", size = 1) +
labs(title = "New Cases Per Capita: States",
x = "Date",
y = "Newcases",
caption = "Geog 176A-Lab 02",
subtitle = "COVID-19 Data: NY-Times",
color = "") +
facet_wrap(~state, scales = "free_y")
## Warning: Removed 4 rows containing missing values (position_stack).
## Warning: Removed 7 row(s) containing missing values (geom_path).
theme(plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
plot.title = element_text(size = 15, face = 'bold')) +
theme(aspect.ratio = .5)
## List of 4
## $ panel.background:List of 5
## ..$ fill : chr "white"
## ..$ colour : NULL
## ..$ size : NULL
## ..$ linetype : NULL
## ..$ inherit.blank: logi FALSE
## ..- attr(*, "class")= chr [1:2] "element_rect" "element"
## $ plot.background :List of 5
## ..$ fill : chr "white"
## ..$ colour : NULL
## ..$ size : NULL
## ..$ linetype : NULL
## ..$ inherit.blank: logi FALSE
## ..- attr(*, "class")= chr [1:2] "element_rect" "element"
## $ plot.title :List of 11
## ..$ family : NULL
## ..$ face : chr "bold"
## ..$ colour : NULL
## ..$ size : num 15
## ..$ hjust : NULL
## ..$ vjust : NULL
## ..$ angle : NULL
## ..$ lineheight : NULL
## ..$ margin : NULL
## ..$ debug : NULL
## ..$ inherit.blank: logi FALSE
## ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ aspect.ratio : num 0.5
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi FALSE
## - attr(*, "validate")= logi TRUE
Scaling by population, it data presents the directivity of the data. It becomes better for comparing the data because for some areas with absolute small population and small amount of confirmed cases (i.e. Louisiana), the ration of cases over population introduces a objective comparison between different places.It is now comparing the relative amount among different areas.
#Question3
library(readr)
county_centroids <- read_csv("../data/county-centroids.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
## X1 = col_double(),
## fips = col_character(),
## name = col_character(),
## state_name = col_character(),
## LON = col_double(),
## LAT = col_double()
## )
head(county_centroids)
## # A tibble: 6 x 6
## X1 fips name state_name LON LAT
## <dbl> <chr> <chr> <chr> <dbl> <dbl>
## 1 1 39131 Pike Ohio -83.1 39.1
## 2 2 46003 Aurora South Dakota -98.6 43.7
## 3 3 55035 Eau Claire Wisconsin -91.3 44.7
## 4 4 72145 Vega Baja Puerto Rico -66.4 18.4
## 5 5 48259 Kendall Texas -98.7 29.9
## 6 6 40015 Caddo Oklahoma -98.4 35.2
library(tidyverse)
library(ggplot2)
library(ggthemes)
county2 = county_centroids %>%
select(county = name, LON, LAT, fips)
covid_xy = inner_join(covid, county2, by = c("county", "fips"))
xy1 <- covid_xy %>%
mutate(xcoord = cases * LON, ycoord = cases * LAT) %>%
group_by(date) %>%
summarize(cases = sum(cases), xcoord = sum(xcoord), ycoord = sum(ycoord)) %>%
mutate(longitude = xcoord / cases, latitude = ycoord / cases) %>%
mutate(month = format(date, "%m"))
## `summarise()` ungrouping output (override with `.groups` argument)
xy2 <- xy1 %>%
group_by(month) %>%
summarise(mocases = sum(cases))
## `summarise()` ungrouping output (override with `.groups` argument)
xy3 <- inner_join(xy1, xy2, by = "month") %>%
select(date, longitude, latitude)
knitr::kable(xy3, caption = "COVID-19 Weighted Mean", col.names = c("Date","Longitude","Latitude"))
Date | Longitude | Latitude |
---|---|---|
2020-01-21 | -121.71707 | 48.04616 |
2020-01-22 | -121.71707 | 48.04616 |
2020-01-23 | -121.71707 | 48.04616 |
2020-01-24 | -104.76683 | 44.94380 |
2020-01-25 | -109.09942 | 41.19636 |
2020-01-26 | -111.60366 | 38.24914 |
2020-01-27 | -111.60366 | 38.24914 |
2020-01-28 | -111.60366 | 38.24914 |
2020-01-29 | -111.60366 | 38.24914 |
2020-01-30 | -107.63915 | 38.84786 |
2020-01-31 | -109.64744 | 38.61689 |
2020-02-01 | -104.82632 | 39.08077 |
2020-02-02 | -109.56226 | 38.67105 |
2020-02-03 | -109.56226 | 38.67105 |
2020-02-04 | -109.56226 | 38.67105 |
2020-02-05 | -107.88345 | 39.03726 |
2020-02-06 | -107.88345 | 39.03726 |
2020-02-07 | -107.88345 | 39.03726 |
2020-02-08 | -107.88345 | 39.03726 |
2020-02-09 | -107.88345 | 39.03726 |
2020-02-10 | -108.56428 | 38.57552 |
2020-02-11 | -108.56428 | 38.57552 |
2020-02-12 | -107.84690 | 37.92372 |
2020-02-13 | -107.22516 | 37.35883 |
2020-02-14 | -107.22516 | 37.35883 |
2020-02-15 | -107.22516 | 37.35883 |
2020-02-16 | -107.22516 | 37.35883 |
2020-02-17 | -102.79544 | 38.93337 |
2020-02-18 | -102.79544 | 38.93337 |
2020-02-19 | -102.79544 | 38.93337 |
2020-02-20 | -103.33011 | 39.08625 |
2020-02-21 | -103.60991 | 38.42267 |
2020-02-22 | -103.60991 | 38.42267 |
2020-02-23 | -103.60991 | 38.42267 |
2020-02-24 | -104.87364 | 38.07401 |
2020-02-25 | -104.83642 | 38.20319 |
2020-02-26 | -109.12713 | 38.23063 |
2020-02-27 | -109.12713 | 38.23063 |
2020-02-28 | -109.76143 | 38.48641 |
2020-02-29 | -110.13587 | 38.90233 |
2020-03-01 | -111.28243 | 39.34318 |
2020-03-02 | -110.84800 | 39.73677 |
2020-03-03 | -111.41056 | 39.99539 |
2020-03-04 | -110.43084 | 40.45149 |
2020-03-05 | -109.57127 | 40.88431 |
2020-03-06 | -105.91102 | 40.51154 |
2020-03-07 | -103.26843 | 40.63572 |
2020-03-08 | -102.28225 | 40.83108 |
2020-03-09 | -101.84456 | 40.73198 |
2020-03-10 | -100.96236 | 41.21422 |
2020-03-11 | -100.79788 | 41.16062 |
2020-03-12 | -100.19289 | 41.04925 |
2020-03-13 | -99.58952 | 40.67829 |
2020-03-14 | -98.84527 | 40.52105 |
2020-03-15 | -97.91477 | 40.13559 |
2020-03-16 | -97.50178 | 40.02873 |
2020-03-17 | -96.01656 | 39.82074 |
2020-03-18 | -94.34913 | 39.50682 |
2020-03-19 | -92.33915 | 39.46876 |
2020-03-20 | -90.94669 | 39.29020 |
2020-03-21 | -89.72008 | 39.24798 |
2020-03-22 | -88.34892 | 39.32213 |
2020-03-23 | -87.50645 | 39.33203 |
2020-03-24 | -86.99549 | 39.31713 |
2020-03-25 | -86.55382 | 39.20133 |
2020-03-26 | -86.41556 | 39.17700 |
2020-03-27 | -86.25009 | 39.14841 |
2020-03-28 | -85.88313 | 39.11974 |
2020-03-29 | -85.65266 | 39.12286 |
2020-03-30 | -85.55488 | 39.09877 |
2020-03-31 | -85.34786 | 38.97939 |
2020-04-01 | -85.31978 | 38.94598 |
2020-04-02 | -85.27695 | 38.83296 |
2020-04-03 | -85.06093 | 38.82488 |
2020-04-04 | -84.80636 | 38.80190 |
2020-04-05 | -84.80197 | 38.83043 |
2020-04-06 | -84.64756 | 38.78922 |
2020-04-07 | -84.53244 | 38.76139 |
2020-04-08 | -84.41680 | 38.77909 |
2020-04-09 | -84.32947 | 38.77330 |
2020-04-10 | -84.22378 | 38.78812 |
2020-04-11 | -84.14674 | 38.79967 |
2020-04-12 | -84.08134 | 38.81974 |
2020-04-13 | -84.05539 | 38.81248 |
2020-04-14 | -84.01732 | 38.82617 |
2020-04-15 | -84.00795 | 38.83153 |
2020-04-16 | -83.92644 | 38.84950 |
2020-04-17 | -83.90980 | 38.84142 |
2020-04-18 | -83.91162 | 38.85681 |
2020-04-19 | -83.85708 | 38.87202 |
2020-04-20 | -83.90651 | 38.87152 |
2020-04-21 | -83.95576 | 38.86410 |
2020-04-22 | -83.97437 | 38.87452 |
2020-04-23 | -83.99720 | 38.87166 |
2020-04-24 | -83.98080 | 38.89894 |
2020-04-25 | -83.95909 | 38.93252 |
2020-04-26 | -83.95273 | 38.94297 |
2020-04-27 | -84.00340 | 38.94399 |
2020-04-28 | -84.03362 | 38.94572 |
2020-04-29 | -84.11681 | 38.95063 |
2020-04-30 | -84.16396 | 38.95718 |
2020-05-01 | -84.22121 | 38.95421 |
2020-05-02 | -84.26843 | 38.95446 |
2020-05-03 | -84.32438 | 38.96485 |
2020-05-04 | -84.37582 | 38.95973 |
2020-05-05 | -84.44419 | 38.92172 |
2020-05-06 | -84.53328 | 38.92182 |
2020-05-07 | -84.58601 | 38.92061 |
2020-05-08 | -84.67140 | 38.92201 |
2020-05-09 | -84.74042 | 38.91410 |
2020-05-10 | -84.76529 | 38.90989 |
2020-05-11 | -84.80349 | 38.90960 |
2020-05-12 | -84.87709 | 38.90173 |
2020-05-13 | -84.94616 | 38.88774 |
2020-05-14 | -85.00682 | 38.88050 |
2020-05-15 | -85.08625 | 38.86982 |
2020-05-16 | -85.13437 | 38.86690 |
2020-05-17 | -85.16707 | 38.86239 |
2020-05-18 | -85.20307 | 38.85868 |
2020-05-19 | -85.25569 | 38.84749 |
2020-05-20 | -85.30450 | 38.84315 |
2020-05-21 | -85.36197 | 38.82275 |
2020-05-22 | -85.42312 | 38.81585 |
2020-05-23 | -85.48128 | 38.80660 |
2020-05-24 | -85.52456 | 38.80460 |
2020-05-25 | -85.56852 | 38.79158 |
2020-05-26 | -85.64199 | 38.77474 |
2020-05-27 | -85.70095 | 38.76076 |
2020-05-28 | -85.75618 | 38.74666 |
2020-05-29 | -85.83234 | 38.72761 |
2020-05-30 | -85.91430 | 38.70781 |
2020-05-31 | -85.98881 | 38.69112 |
2020-06-01 | -86.01690 | 38.68471 |
2020-06-02 | -86.09843 | 38.66545 |
2020-06-03 | -86.16604 | 38.64309 |
2020-06-04 | -86.22957 | 38.61457 |
2020-06-05 | -86.33733 | 38.59848 |
2020-06-06 | -86.40692 | 38.57111 |
2020-06-07 | -86.48501 | 38.55056 |
2020-06-08 | -86.54775 | 38.53332 |
2020-06-09 | -86.62061 | 38.50641 |
2020-06-10 | -86.70563 | 38.47271 |
2020-06-11 | -86.79881 | 38.44074 |
2020-06-12 | -86.89573 | 38.40253 |
2020-06-13 | -86.97926 | 38.36053 |
2020-06-14 | -87.03784 | 38.33068 |
2020-06-15 | -87.11287 | 38.30151 |
2020-06-16 | -87.22370 | 38.25373 |
2020-06-17 | -87.33673 | 38.21032 |
2020-06-18 | -87.44462 | 38.16938 |
2020-06-19 | -87.56227 | 38.11467 |
2020-06-20 | -87.67831 | 38.06004 |
2020-06-21 | -87.78122 | 38.01913 |
2020-06-22 | -87.91551 | 37.97090 |
2020-06-23 | -88.06802 | 37.91299 |
2020-06-24 | -88.18025 | 37.84783 |
2020-06-25 | -88.29790 | 37.79360 |
2020-06-26 | -88.41906 | 37.71825 |
2020-06-27 | -88.51414 | 37.64474 |
2020-06-28 | -88.62290 | 37.58025 |
2020-06-29 | -88.73743 | 37.53063 |
2020-06-30 | -88.89787 | 37.46082 |
2020-07-01 | -89.04987 | 37.39379 |
2020-07-02 | -89.17898 | 37.31934 |
2020-07-03 | -89.30126 | 37.24508 |
2020-07-04 | -89.40924 | 37.17542 |
2020-07-05 | -89.49926 | 37.11915 |
2020-07-06 | -89.60566 | 37.06909 |
2020-07-07 | -89.74902 | 37.00895 |
2020-07-08 | -89.86178 | 36.94521 |
2020-07-09 | -89.96823 | 36.88564 |
2020-07-10 | -90.06408 | 36.81952 |
2020-07-11 | -90.14747 | 36.76352 |
2020-07-12 | -90.20769 | 36.70237 |
2020-07-13 | -90.28424 | 36.64737 |
2020-07-14 | -90.39484 | 36.59461 |
2020-07-15 | -90.47869 | 36.54428 |
2020-07-16 | -90.57764 | 36.47711 |
2020-07-17 | -90.66820 | 36.43112 |
2020-07-18 | -90.73216 | 36.39086 |
2020-07-19 | -90.78723 | 36.34311 |
2020-07-20 | -90.85234 | 36.30849 |
2020-07-21 | -90.93081 | 36.27228 |
2020-07-22 | -91.01596 | 36.23502 |
2020-07-23 | -91.08417 | 36.19882 |
2020-07-24 | -91.13900 | 36.16627 |
2020-07-25 | -91.19623 | 36.13196 |
2020-07-26 | -91.22094 | 36.11037 |
2020-07-27 | -91.26255 | 36.08913 |
2020-07-28 | -91.30714 | 36.06176 |
2020-07-29 | -91.36696 | 36.03990 |
2020-07-30 | -91.40591 | 36.01135 |
2020-07-31 | -91.44895 | 35.98784 |
2020-08-01 | -91.47764 | 35.96886 |
2020-08-02 | -91.50515 | 35.95004 |
2020-08-03 | -91.54262 | 35.93613 |
2020-08-04 | -91.56652 | 35.92108 |
2020-08-05 | -91.59286 | 35.90945 |
2020-08-06 | -91.62896 | 35.89599 |
2020-08-07 | -91.65413 | 35.88185 |
2020-08-08 | -91.67574 | 35.86832 |
2020-08-09 | -91.70192 | 35.85686 |
2020-08-10 | -91.76003 | 35.85094 |
2020-08-11 | -91.81139 | 35.84033 |
2020-08-12 | -91.83849 | 35.82543 |
2020-08-13 | -91.87426 | 35.82050 |
2020-08-14 | -91.91626 | 35.81128 |
2020-08-15 | -91.94898 | 35.80285 |
2020-08-16 | -91.98262 | 35.79809 |
2020-08-17 | -92.01049 | 35.79691 |
2020-08-18 | -92.02914 | 35.78813 |
2020-08-19 | -92.04135 | 35.78776 |
2020-08-20 | -92.06251 | 35.78593 |
2020-08-21 | -92.08065 | 35.78239 |
2020-08-22 | -92.09270 | 35.78073 |
2020-08-23 | -92.10525 | 35.77966 |
2020-08-24 | -92.12248 | 35.77972 |
2020-08-25 | -92.14593 | 35.77989 |
2020-08-26 | -92.15682 | 35.77987 |
2020-08-27 | -92.16885 | 35.78465 |
2020-08-28 | -92.18042 | 35.78736 |
2020-08-29 | -92.18264 | 35.78903 |
2020-08-30 | -92.19093 | 35.79042 |
2020-08-31 | -92.20632 | 35.79503 |
2020-09-01 | -92.20042 | 35.78902 |
2020-09-02 | -92.24419 | 35.78253 |
2020-09-03 | -92.25249 | 35.78691 |
2020-09-04 | -92.25787 | 35.80027 |
2020-09-05 | -92.26169 | 35.80377 |
2020-09-06 | -92.26490 | 35.80668 |
2020-09-07 | -92.26130 | 35.81101 |
2020-09-08 | -92.26779 | 35.81404 |
2020-09-09 | -92.27203 | 35.81653 |
2020-09-10 | -92.27199 | 35.82164 |
2020-09-11 | -92.26961 | 35.82512 |
2020-09-12 | -92.26811 | 35.83135 |
xy4 <- xy2 %>%
select(month, mocases)
knitr::kable(xy4, caption = "Monthly New Cases", col.names = c("Month","New Cases"))
Month | New Cases |
---|---|
01 | 41 |
02 | 736 |
03 | 790711 |
04 | 15761769 |
05 | 38777213 |
06 | 57806205 |
07 | 102964255 |
08 | 156722282 |
09 | 71422826 |
ggplot(data = xy1, aes(x = longitude, y = latitude)) +
borders("state", fill = "gray", colour = "white") +
geom_point(aes(color = month, size = cases)) +
labs(title = "COVID-19 Weighted Mean",
x = "Longitude",
y = "Latitude",
caption = "Geog 176A-Lab 02",
subtitle = "COVID-19 Data: NY-Times",
color = "")
Weight is a relative concept. The weight of the weighted average reflects the relative importance in the overall evaluation. The weight indicates that in the evaluation process, it is the quantitative allocation of the importance degree of different aspects of the evaluated object, and the role of each evaluation factor in the overall evaluation is treated differently. In fact, an evaluation without a focus is not an objective evaluation. Weight indicates how important certain data is in a set of data, so the weighted average effect must be studied in combination with specific examples. The size of the weighted average is not only related to each data in a set but is also affected by the weight of each data. The greater the weight.The greater the effect on the average size. The reverse is smaller.